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Introduction 

In the late 20th century, progressive rock and alternative punk coalesced into a new 

genre: “math rock.” To start, let’s put ourselves in the mathy ambiance by listening to a bit of 

“Chinchilla” by the band TTNG—try to find the meter as you listen. 

(https://tinyurl.com/TTNGChinchilla) For the record, the verse uses groupings of 11 + 13. As 

you may have just heard, math rock contains “extensive use of asymmetrical…time signatures” 

(Cateforis 2002, 244) and frequent shifts in meter—the obsessive counting involved in its 

discourse is how the “math rock” nomenclature was formed. Coincidentally, the “cyclical 

repetition of ostinati” (Osborn 2010, 43) in math rock is aptly modeled by a mathematical 

equation: the discrete Fourier transform (henceforth DFT). In fact, the DFT assumes cyclic 

structures, giving it an analytical bias uniquely suited to study math rock’s rhythms. I not only 

suggest that the DFT is appropriate for the genre, but that it represents a cognitively-informed 

model of meter—modeling aptitude for metric entrainment.  

I’ve split the talk into four parts: 1) a short introduction to the math rock genre; 2) an 

explanation of the DFT, connecting the abstract mathematics to music cognition; 3) a description 

of my methodology; and 4) an analysis of excerpts from three math rock songs. In doing so, I 

aim to add to the growing discourse of rhythm and meter by examining an underrepresented 

musical style through a new theoretical lens.  

So… what is Math Rock and where did it come from? 
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Part I. Math-rock  

While any stylist genealogy is complex, we know for sure that the earliest math bands 

were inspired by progressive-rock bands like King Crimson and Yes (see Figure 1, below). Math 

bands like Don Caballero (Pittsburgh PA) and Chavez (New York, NY) are some of the genre’s 

first flagships and represent an earlier style more akin to post-rock. Many recent math-rock 

bands, however, are adopting the math-emo nomenclature and even attract a similar fanbase. The 

term “emo” comes from the D.C. hardcore scene in the mid 80s—short for “emotional 

hardcore.” As scholars have defined it, one defining characteristic of the contemporary emo 

genre is its timbral twinkle in the guitars (Howie 2020), but as the emo style gains popularity and 

becomes more widespread, its sound becomes less ubiquitous (Eberhart 2016).1 If you’re 

interested in exploring math-rock/emo style more, I’ve attached a short spotify playlist you can 

listen to on your handout. For now, I’ll examine bands which lean towards the emo side of math 

rock. I’ll be examining 3 math-rock songs: “Never Meant” by the indisputably most influential 

fourth-wave math-emo band: American Football; “Pool” by an all femme Japanese band Tricot; 

and “Cat Fantastic” by the UK band TTNG.  

 

 
Figure 1. Math rock timeline 

 
 

 
1 The twinkly sound is a relatively natural electric guitar sound with added compression pedal. Some artists 

differentiate their styles with different amounts of overdrive. Yvette Young uses a lot while Tiny Moving Parts 
reserve overdrive for particular moments in the piece. 
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We’ll be using the DFT to examine rhythms in these songs, so first I’ll explain what the 

DFT is and how it works. 

 
Part II. The discrete Fourier transform 

 The DFT converts a signal, or input, into its sinusoidal components—I won’t discuss the 

math here, but if you’re interested, your online handout has a color-coded equation. Essentially, 

the DFT’s task is to break down and retrieve information from a signal, and ours, as interpreters, 

is to relate these individual elements to the whole.  

While the algorithm for the equation has been around since the early 19th century, in 

music theory, its introduction started with David Lewin. David Lewin was the first to propose 

using the DFT in music theory in 1959. However, the DFT remained untouched by music 

theorists until Lewin himself returned to it in 2001. Ian Quinn and Clifton Callender picked up 

his torch and were the first to explore the DFT extensively. Since then, the DFT has been applied 

and discussed in various contexts, as shown on the slide behind me. Only recently has the DFT 

been implemented in the rhythmic domain. (Milne, Bulger, Herff 2017; Chiu 2018; Yust 

forthcoming MTS).  

In order to calculate the DFT, we require some form of input. Because this paper works 

with symbolic music, its input will be an array of numbers representing positions in time (see 

Figure 2). To determine the number of non-trivial components resulting from the DFT, divide the 

length of the array by 2. So if we divide 4/4 into eighth notes, there are 8 positions and therefore 

4 relevant components. 

 

 
Figure 2. Array representing positions in time. 
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Each one of those components corresponds with a division of the space into its respective 

number (see Figure 3). So f4—the fourth component—divides the span into 4 parts. Because 4 is 

a factor of 8, this might also be thought of as a division into “quarter-notes.” The more onsets 

that coincide with this division, the higher the magnitude for the component. A steady quarter-

note input has a maximal magnitude for a f4 here. 

 

 
Figure 3. Division into respective components. 

 
 

On a perceptual note, I argue that the DFT is theoretically similar to Edward Large’s 

neural oscillator model—a model based around neurons firing together when we entrain (Figure 

4a). Like the DFT, in Large’s model as more onsets align with the same periodicity, the higher 

the magnitude for that periodicity. As an analogy, Large and Jones show a rolling circle 

symbolizing our attentive state (see Figure 4b).  
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Figure 4a–b. Neural oscillator model (from Large 1994); Rolling circle analogy (from 
Large and Jones 1999). 
 

 
We can directly map an “entrainment oscillator” to a DFT component with some simple 

trigonometry. So in a cognitively aware way of thinking, the DFT components are represented as 

a series of rolling circles at a certain subdivision. Each component, therefore, represents a 

particular attentional state (London 2012). Throughout the presentation, I’ll change between the 

various representations of DFT components—just know that they are all equal; the DFT 

components occupy an interesting theoretical space, conceptually sinusoids dividing the space, 

subdivisional projections in the music, or attentional states in entrainment—a three-faced coin.  

For a DFT example, let’s do a quick walkthrough on our favorite overly-theorized 

rhythm: the tresillo pattern—an almost triplet see (Figure 5). According to the DFT the rhythm is 

maximally-even distribution of 3 into 8 (see Figure 6). I call these visualizations rhythmic 

profiles. Each one of the components on the x-axis represents a division into that many parts: the 

3rd component divides the measure into 3 parts—so we can consider the magnitude on the y-axis 

to represent a goodness of fit, or as how well the stimulus can be fit into a certain sinusoid.  

 

 
Figure 5. Tresillo timeline. 
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Figure 6. Rhythmic profile for a tresillo. 

 
 

 So that was the theoretical backing, but, just as important, we need to decide how to 

organize the rhythms we’ll be examining. This is where the methodology is needed: the 

methodology is how we frame the musical object before analysis. 

 

Part III. Methodology 

 We might say that the theory of this paper is formed epistemologically on connecting the 

DFT to cognitive theories of entrainment and that the interpretive results are guided by how the 

methodology encodes the musical object. For now, I’ll just discuss the specific weighting system 

implemented here.  

In this paper I’ve implemented a rule-based system based on Lerdahl and Jackendoff’s 

Metric Preference Rules and the internal-clock accent rules from Povel and Essens (1985) (see 

Figure 7). The rules take a rhythm and systematically derives an accent profile from it. So using 

this unfamiliar Mozart example (see Figure 8)… we go through the rules and derive an accent 

profile.  
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Figure 7. Accent profile Rules 
 

 

 
Figure 8. Accent profiles on melody of Mozart K. 331. 
  

 
So, after going through each parameter, the rhythm is described in terms of an array that 

we can use the DFT on. Let’s listen with it in mind (https://tinyurl.com/UchidaMozart).  What 

I found interesting here, is that, while the general meter is conveyed merely through events, the 

weighting isn’t a great representation of the Mozart example… I think these rules are good for 

deriving accent profiles for Math Rock—implying a difference between how we listen to 

different styles. Now let’s put the methodology to use with an analysis American Football’s 

Never Meant. 
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Part IV. Analytical Vignettes: Never Meant 

 The iconic beginning of “Never Meant,” shown in Figure 9, starts with a little intro 

before 6 rim clicks lead into the lead guitar enters (https://tinyurl.com/NeverMeantG1). You 

may have noticed that in the accent profiles, I have intentionally left out drum patterns due to 

their clear paradigms to evoke certain meters, which is something we might discuss in the Q and 

A (in lieu of the Q+A, if you have questions I encourage the reader to email me with any 

questions or comments). Per the guitar, I hear the lowest notes in the pattern sticking out and, 

after calculating the accent profile, the array generally shows that too. So now we use the DFT 

on the array, and it results in the rhythmic profile in Figure 10. There are 4 peaks corresponding 

to divisions of the rhythm into 3, 6, 9, and 12 parts. Because components 3,6, and 12 are factors 

of the rhythm’s 24-eighth-note length, they correspond to notational subdivisions. The high 

magnitude for these components suggest that this rhythm projects whole-, half-, and quarter-note 

pulses. The DFT profile is therefore implying 3 measures of 4/4. 

 

 
Figure 9. “Never Meant”: guitar 1 and accent profile. 
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Figure 10. “Never Meant” rhythmic profile. 

 
 Returning to the song: after the pattern of the lead guitar has looped 4 times the second 

guitar enters and stacks another cycle on top spanning 24-eighth notes (Figure 11). Let’s listen—

pay particular attention to the lower line of the second guitar 

(https://tinyurl.com/NeverMeantG2). That lower line projecting 7+6+7+4 in eighth notes 

sticks out to me, and, again, the weighting does show that. In the rhythmic profile (Figure 12), 

there are peaks around components 4, 7, and 10/11. The fourth component is high because the 

projection 7+6+7+4 is nearly an even division into 4 parts.  

 

 
Figure 11. “Never Meant” guitar 2 and accent profile. 
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Figure 12. “Never Meant” rhythmic profile. 
 

 
As shown on the clocks in Figure 13a and 13b, you can see that the lower line occupies 

positions {0, 7, 13, 20} which is very close to an even division: {1, 7, 13, 19}—only 2 onset 

shifts away. Let’s listen again and see if you can hear how that bass line is nearly even… Even if 

it’s offset a bit, the lower notes feel like they’re afterbeat syncopations 

(https://tinyurl.com/NeverMeantG2). 

 

  
Figure 13a. Nearly even division of 4 (from the lower line); 13b. Transformation to even 
distribution. 

 
 

The 10th component of the excerpt (see Figure 12) doesn’t correspond with an integer 

subdivision. It corresponds to “2.4” eight-note projections which… doesn’t musically make 
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sense. Instead, we might interpret this as the approximate average between two projections: the 

quarter note and dotted quarter. In other words, competing subdivisions—a metric conflict. 

To represent metric conflict, Rick Cohn introduces a visual which divides the levels of a 

meter into its duple and triple subdivisions—“metric ski-hill graphs” (Figure 14a). The ski-hill 

graph can be directly mapped onto DFT components (Figure 14b). Not only that, but because 

each component has magnitude, it can quantitatively show a depth to how much a subdivision or 

conflict is conveyed. In other words, it creates a topological surface with gradients and degrees, 

rather than a binary “present or not.”  

 

 
Figure 134a. Metric ski-hill graph; 14b. ski-hill graph with DFT components. 

 
Reviewing Never Meant: the rhythm is a near even division into 4 even parts, and at a 

lower level it has metrical conflict between the quarter and dotted-quarter. Let’s listen one more 

time and see if you can hear both of these phenomena. (https://tinyurl.com/NeverMeantG2) 

 
 

Analytical Vignettes: Pool 

In 2010, guitarist and vocalist Ikumi “Ikkyu” Nakajima formed the band Tricot. A 2015 

issue of the Rolling Stone, entitled “10 New Artists You Need to Know” has described them as 

“adrenalized math rock.” This is the beginning of “Pool” off of their album T H E 

Bhttps://www.youtube.com/watch?v=TZjTXh_zaXc 0:00–:50). After a short introduction, the 

f12

f6

f3

f24

f18

f36

f9

f4/5f2

f4

f8

f16
3

3

3

3



 

 12 

guitar projects a grouping of 5 and repeats that grouping 3 times, making a cycle of 15-eighth 

notes (Figure 14). A DFT of the array yields the rhythmic profile in Figure 15. It picks up the 5-

projections in f3 and also shows a high magnitude for f6 . f6 corresponds to a further division of 

the 58 into 2 parts, showing the inherent back-and-forth in the subdivisional conflict of a 58 meter.  

 
 

 
Figure 14. “Pool” guitar cycle. 
 
 

 
Figure 15. “Pool” rhythmic profile. 
 

 
 After the guitar, Ikkyu then enters with a voice part, repeating a grouping of 10 three 

times, making a cycle of 30 (Figure 16). The 10-projections are split into 3+3+2+2.2 The 

rhythmic profile is shown in Figure 17. The DFT unsurprisingly picks up on the 10-projections 

 
2 Except for one absent onset towards the end. 

 & œ# œ œ œJ ‰ œj œ# œ œ ‰ œ# œ œ œ ‰
[5, 2, 2, 2, 0, 1,5, 2, 2, 5, 2,1, 3,0, 0,
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in f3 , and shows an underlying quarter note subdivision throughout, but, interestingly, there are 

peaks at f9, and f12.  

 

 
Figure 16. “Pool” vocal line. 
 
 
 

 
Figure 17. “Pool” voice line rhythmic profile 

 
 Both components 9 and 12 represent divisions of the 108  measures into 3 and 4 parts 

respectively. This shows that the rhythm 3+3+2+2 is structurally close to a maximally even 

division into 4 parts—3+2+3+2 (Figure 18a)—and 3 parts—3+3+4 (see Figure 18b). This 

suggests, more obviously, that projections of 3 and 2 (and 4) are prominent, both vying for, or 

perhaps sharing the role of tactus. An isochronous interpretation of non-isochronous meters—

like the DFT—therefore shows the average of the competing subdivision projections. 

 & œ ™ œb ™ œb œ œ ™ œb ™ œ œ œ# ™ ‰ Œ œn œ
[4,   1, 1, 2,0, 0, 0, 0, 0, 0, 4, 0, 0, 1, 0, 0, 2, 1,0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 0]2,
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Figure 18a. Nearly even division into 4 parts; and 18b. nearly even division into 3 parts 

 
 
Analytical Vignettes: Cat Fantastic 

 Finally, we turn to TTNG’s “Cat Fantastic.” Examples thus far have been strict ostinato; 

let’s look at an example which complicates that. The bridge starts with a solo electric bass, and is 

later joined by a melody doubled in the voice and guitar (see Figure 19) 

(https://tinyurl.com/CatFantastic). The bridge repeats 3 patterns of 78 followed by a measure 

that changes with each iteration. For every repetition, the altered measured adds an extra eighth 

note, moving from 38, to 48, to 58, and, finally, to 68. I call this a Milankovitch cycle, named after 

the astronomer who first described orbital cycles that change over time; just like the planets, this 

cycle changes ever so slightly with each rotation. 
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Figure 19. “Cat Fantastic” Milankovitch cycle. 
 

 
Figure 20 shows the rhythmic profiles of each iteration in the Milankovitch cycle 

calculated with the bass and voice line. Despite the slight variations between each iteration, each 

profile retains the general shape. They have peaks that roughly represent the 78 measure level, an 

asymmetrical division of that into two parts, and a further division. In this way, the profiles 

resemble our common metric hierarchies.  
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Figure 20. “Cat Fantastic” rhythmic profiles where C is the cycles length in eighth notes. 
 

 
The rhythmic patterns in the first and third iteration are essentially identical and their 

rhythmic profiles show that too (Figure 20). There is one significant change in the profiles 

though. Due to the extension of the extra measure, the pattern gradually develops a larger-scale 

symmetry. Notice, as the cycle continues to grow, the pattern approaches a larger 2- and 4- part 

symmetry (Figure 21).  So in the smaller cycle (C=24), meter and hypermeter are lumped 

together, but in a larger cycle (C=26), the meter and hypermeter becomes untangled.  I think this 

feature captures the phenomenological experience of the progression’s process: the 38 slowly 

snails out, and, as it stretches, it alters the symmetry of the cycle. Let’s listen once more, 

focusing on this sprawling symmetry (https://tinyurl.com/CatFantasticCut). 
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Figure 21. “Cat Fantastic” sprawling symmetry. 
 
 

Conclusion 

My argument situates the DFT as a mathematical equation appropriate for modeling a 

cognitive experience of meter, and does so on underexamined music popular today. I’ve shown 3 

math rock examples: “Never Meant” which has metric conflict within a standard meter, “Pool” 

which has metric conflict and near-evenness despite asymmetrical meters, and “Cat Fantastic” a 

piece with changing cycles and asymmetrical meters—and, hopefully, I’ve shown how the DFT 

captures all of these features. While I’ve demonstrated how both Cohn’s metric-ski hills and 

Large’s oscillator models can be adopted and unified by DFT components, the field of metric 

theory is vast—this was only a Fourier into its troughs.  




